In the figure thus, all the points O' that satisfy the condition d1 = d2 or O'P1 = O'P2. This condition holds true only for all the points that are equidistant from both lines L1 and L2 i.e that lie on the angle bisector of line L1 and L2.
An alternative intuitive explanation
Torque is responsible to change the angular momentum of a particle. In order for the particles angular momentum not to change before and after collision the particle should not experience any torque with respect to point O' during the collision with the wall. During the collision from the wall the particle will experience a normal reaction force, that is responsible for changing its direction of motion. This same normal reaction will also be responsible for generating the torque on the particle in order for its angular momentum to change. If O' is so chosen that the torque generated by the Normal reaction as seen from O' is 0, then the angular momentum of the particle will not change. Since Normal reaction is not 0, the only way the torque can be zero is if the direction of normal reaction passes through point O' to make the moment arm 0. In other words, O' must lie on the normal to the plane of reflection passing through the point of reflection.
b)
is given by O'P1 = O'P2 =
The angular momentum of the particle before reflection as seen from O' is given by
After reflection the magnitude of the angular momentum of the particle does not change but its direction flips (also obtained by using Flemings right hand rule) and is given by